Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 644
Filtrar
1.
J Biol Chem ; 296: 100666, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33862082

RESUMO

Heme oxygenases (HOs) play a critical role in recouping iron from the labile heme pool. The acquisition and liberation of heme iron are especially important for the survival of pathogenic bacteria. All characterized HOs, including those belonging to the HugZ superfamily, preferentially cleave free b-type heme. Another common form of heme found in nature is c-type heme, which is covalently linked to proteinaceous cysteine residues. However, mechanisms for direct iron acquisition from the c-type heme pool are unknown. Here we identify a HugZ homolog from the oligopeptide permease (opp) gene cluster of Paracoccus denitrificans that lacks any observable reactivity with heme b and show that it instead rapidly degrades c-type hemopeptides. This c-type heme oxygenase catalyzes the oxidative cleavage of the model substrate microperoxidase-11 at the ß- and/or δ-meso position(s), yielding the corresponding peptide-linked biliverdin, CO, and free iron. X-ray crystallographic analysis suggests that the switch in substrate specificity from b-to c-type heme involves loss of the N-terminal α/ß domain and C-terminal loop containing the coordinating histidine residue characteristic of HugZ homologs, thereby accommodating a larger substrate that provides its own iron ligand. These structural features are also absent in certain heme utilization/storage proteins from human pathogens that exhibit low or no HO activity with free heme. This study thus expands the scope of known iron acquisition strategies to include direct oxidative cleavage of heme-containing proteolytic fragments of c-type cytochromes and helps to explain why certain oligopeptide permeases show specificity for the import of heme in addition to peptides.


Assuntos
Proteínas de Bactérias/metabolismo , Biliverdina/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Heme/análogos & derivados , Heme/metabolismo , Ferro/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Paracoccus denitrificans/enzimologia , Catálise , Cristalografia por Raios X , Heme Oxigenase (Desciclizante)/química , Especificidade por Substrato
2.
Nat Commun ; 12(1): 933, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568660

RESUMO

Bioconversion of peptidyl amino acids into enzyme cofactors is an important post-translational modification. Here, we report a flavoprotein, essential for biosynthesis of a protein-derived quinone cofactor, cysteine tryptophylquinone, contained in a widely distributed bacterial enzyme, quinohemoprotein amine dehydrogenase. The purified flavoprotein catalyzes the single-turnover dihydroxylation of the tryptophylquinone-precursor, tryptophan, in the protein substrate containing triple intra-peptidyl crosslinks that are pre-formed by a radical S-adenosylmethionine enzyme within the ternary complex of these proteins. Crystal structure of the peptidyl tryptophan dihydroxylase reveals a large pocket that may dock the protein substrate with the bound flavin adenine dinucleotide situated close to the precursor tryptophan. Based on the enzyme-protein substrate docking model, we propose a chemical reaction mechanism of peptidyl tryptophan dihydroxylation catalyzed by the flavoprotein monooxygenase. The diversity of the tryptophylquinone-generating systems suggests convergent evolution of the peptidyl tryptophan-derived cofactors in different proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Coenzimas/metabolismo , Dipeptídeos/metabolismo , Flavoproteínas/metabolismo , Indolquinonas/metabolismo , Oxigenases de Função Mista/metabolismo , Paracoccus denitrificans/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Catálise , Coenzimas/química , Dipeptídeos/química , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/metabolismo , Flavoproteínas/química , Indolquinonas/química , Oxigenases de Função Mista/química , Paracoccus denitrificans/química , Paracoccus denitrificans/genética , Paracoccus denitrificans/metabolismo , Triptofano/química , Triptofano/metabolismo
3.
Microbiology (Reading) ; 166(10): 909-917, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32886603

RESUMO

Nitrous oxide (N2O) is a potent greenhouse gas that is produced naturally as an intermediate during the process of denitrification carried out by some soil bacteria. It is consumed by nitrous oxide reductase (N2OR), the terminal enzyme of the denitrification pathway, which catalyses a reduction reaction to generate dinitrogen. N2OR contains two important copper cofactors (CuA and CuZ centres) that are essential for activity, and in copper-limited environments, N2OR fails to function, contributing to rising levels of atmospheric N2O and a major environmental challenge. Here we report studies of nosX, one of eight genes in the nos cluster of the soil dwelling α-proteobaterium Paraccocus denitrificans. A P. denitrificans ΔnosX deletion mutant failed to reduce N2O under both copper-sufficient and copper-limited conditions, demonstrating that NosX plays an essential role in N2OR activity. N2OR isolated from nosX-deficient cells was found to be unaffected in terms of the assembly of its copper cofactors, and to be active in in vitro assays, indicating that NosX is not required for the maturation of the enzyme; in particular, it plays no part in the assembly of either of the CuA and CuZ centres. Furthermore, quantitative Reverse Transcription PCR (qRT-PCR) studies showed that NosX does not significantly affect the expression of the N2OR-encoding nosZ gene. NosX is a homologue of the FAD-binding protein ApbE from Pseudomonas stutzeri, which functions in the flavinylation of another N2OR accessory protein, NosR. Thus, it is likely that NosX is a system-specific maturation factor of NosR, and so is indirectly involved in maintaining the reaction cycle of N2OR and cellular N2O reduction.


Assuntos
Proteínas de Bactérias/metabolismo , Óxido Nitroso/metabolismo , Paracoccus denitrificans/metabolismo , Proteínas de Bactérias/genética , Coenzimas/metabolismo , Cobre/metabolismo , Desnitrificação , Proteínas de Membrana/metabolismo , Mutação , Oxirredução , Oxirredutases/metabolismo , Paracoccus denitrificans/enzimologia , Paracoccus denitrificans/genética
4.
Molecules ; 25(15)2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32727022

RESUMO

Crystal structure analyses at atomic resolution and FTIR spectroscopic studies of cytochrome c oxidase have yet not revealed protonation or deprotonation of key sites of proton transfer in a time-resolved mode. Here, a sensitive technique to detect protolytic transitions is employed. In this work, probing a proton-loading site of cytochrome c oxidase from Paracoccus denitrificans with time-resolved Fourier transform infrared spectroscopy is presented for the first time. For this purpose, variants with single-site mutations of N131V, D124N, and E278Q, the key residues in the D-channel, were studied. The reaction of mutated CcO enzymes with oxygen was monitored and analyzed. Seven infrared bands in the "fast" kinetic spectra were found based on the following three requirements: (1) they are present in the "fast" phases of N131V and D124N mutants, (2) they have reciprocal counterparts in the "slow" kinetic spectra in these mutants, and (3) they are absent in "fast" kinetic spectra of the E278Q mutant. Moreover, the double-difference spectra between the first two mutants and E278Q revealed more IR bands that may belong to the proton-loading site protolytic transitions. From these results, it is assumed that several polar residues and/or water molecule cluster(s) share a proton as a proton-loading site. This site can be propionate itself (holding only a fraction of H+), His403, and/or water cluster(s).


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/genética , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Oxirredução , Paracoccus denitrificans/enzimologia , Prótons , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
5.
FEBS J ; 287(6): 1232-1246, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31597007

RESUMO

Cytochrome c oxidase (CcO), the terminal enzyme of the respiratory chain of mitochondria and many aerobic prokaryotes that function as a redox-coupled proton pump, catalyzes the reduction of molecular oxygen to water. As part of the respiratory chain, CcO contributes to the proton motive force driving ATP synthesis. While many aspects of the enzyme's catalytic mechanisms have been established, a clear picture of the proton exit pathway(s) remains elusive. Here, we aim to gain insight into the molecular mechanisms of CcO through the development of a new homologous mutagenesis/expression system in Paracoccus denitrificans, which allows mutagenesis of CcO subunits 1, 2, and 3. Our system provides true single thiol-reactive CcO variants in a three-subunit base variant with unique labeling sites for the covalent attachment of reporter groups sensitive to nanoenvironmental factors like protonation, polarity, and hydration. To this end, we exchanged six residues on both membrane sides of CcO for cysteines. We show redox-dependent wetting changes at the proton uptake channel and increased polarity at the proton exit side of CcO upon electronation. We suggest an electronation-dependent conformational change to play a role in proton exit from CcO.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/química , Fluorescência , Imagem Óptica , Prótons , Trifosfato de Adenosina/biossíntese , Trifosfato de Adenosina/química , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Elétrons , Modelos Moleculares , Paracoccus denitrificans/enzimologia , Conformação Proteica
6.
Metallomics ; 12(2): 273-279, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31830170

RESUMO

Amicyanin is a type I copper protein that mediates electron transfer between methylamine dehydrogenase and cytochrome c-551i for energy production in Paracoccus denitrificans. Although the Met98 axial ligand of amicyanin has been shown to dictate metal selectivity and specificity during protein folding, the mechanism involved in copper-mediated amicyanin folding is unknown. Here, we kinetically and spectroscopically described reaction steps for incorporating copper into fully and less folded apo-amicyanin and established thermodynamic parameters for two amicyanin folding states. The rate constant for the incorporation of copper into fully folded apo-amicyanin at 25 °C was almost 1.5-fold lower than that for the initial phase of copper addition to the less folded apo-amicyanin. However, the rate constant was 10-fold higher than that of the second phase of copper addition to less folded apo-amicyanin at 25 °C. When overall binding energetic parameters (ΔH° and ΔS°) for the incorporation of copper into fully folded apo-amicyanin were measured by the van't Hoff method and isothermal titration calorimetry, the values were more positive than those determined for less folded apo-amicyanin. This indicates that during amicyanin biogenesis, copper rapidly binds to an unfolded apo-amicyanin active site, inducing protein folding and favorably influencing subsequent organization of copper ligands.


Assuntos
Proteínas de Bactérias/química , Proteínas de Transporte/química , Cobre/química , Metaloproteínas/química , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/química , Paracoccus denitrificans/enzimologia , Dobramento de Proteína , Domínio Catalítico , Grupo dos Citocromos c/química , Transporte de Elétrons , Cinética , Ligação Proteica , Termodinâmica
7.
Biochemistry (Mosc) ; 84(11): 1247-1255, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31760915

RESUMO

Fo×F1-ATPases of mitochondria, chloroplasts, and microorganisms catalyze transformation of proton motive force (the difference between the electrochemical potentials of hydrogen ion across a coupling membrane) to the free energy of ATP phosphoryl potential. It is often stated that Fo×F1-ATPases operate as reversible chemo-mechano-electrical molecular machines that provide either ATP synthesis or hydrolysis depending on particular physiological demands of an organism; the microreversibility principle of the enzyme catalysis is usually taken as a dogma. Since 1980, the author has upheld the view that the mechanisms of ATP synthesis and hydrolysis by the Fo×F1 complex are different (Vinogradov, A. D. (2000) J. Exp. Biol., 203, 41-49). In this paper, the author proposes a new model considering the existence in coupling membranes of two non-equilibrium isoforms of Fo×F1 unidirectionally catalyzing synthesis and/or hydrolysis of ATP.


Assuntos
Trifosfato de Adenosina/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Biocatálise , Cloroplastos/enzimologia , Hidrólise , Cinética , Mitocôndrias/enzimologia , Paracoccus denitrificans/enzimologia , Força Próton-Motriz
8.
J Cell Biochem ; 120(10): 16990-17005, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31131470

RESUMO

Enzymes from natural sources protect the environment via complex biological mechanisms, which aid in reductive immobilization of toxic metals including chromium. Nevertheless, progress was being made in elucidating high-resolution crystal structures of reductases and their binding with flavin mononucleotide (FMN) to understand the underlying mechanism of chromate reduction. Therefore, herein, we employed molecular dynamics (MD) simulations, principal component analysis (PCA), and binding free energy calculations to understand the dynamics behavior of these enzymes with FMN. Six representative chromate reductases in monomeric and dimeric forms were selected to study the mode, dynamics, and energetic component that drive the FMN binding process. As evidenced by MD simulation, FMN prefers to bind the cervix formed between the catalytic domain surrounded by strong conserved hydrogen bonding, electrostatic, and hydrophobic contacts. The slight movement and reorientation of FMN resulted in breakage of some crucial H-bonds and other nonbonded contacts, which were well compensated with newly formed H-bonds, electrostatic, and hydrophobic interactions. The critical residues aiding in tight anchoring of FMN within dimer were found to be strongly conserved in the bacterial system. The molecular mechanics combined with the Poisson-Boltzmann surface area binding free energy of the monomer portrayed that the van der Waals and electrostatic energy contribute significantly to the total free energy, where, the polar solvation energy opposes the binding of FMN. The proposed proximity relationships between enzyme and FMN binding site presented in this study will open up better avenues to engineer enzymes with optimized chromate reductase activity for sustainable bioremediation of heavy metals.


Assuntos
Proteínas de Bactérias/química , Cromatos/química , Escherichia coli/enzimologia , Mononucleotídeo de Flavina/química , NAD/química , Oxirredutases/química , Acetobacteraceae/enzimologia , Acetobacteraceae/genética , Motivos de Aminoácidos , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biocatálise , Cromatos/metabolismo , Desulfovibrio desulfuricans/enzimologia , Desulfovibrio desulfuricans/genética , Escherichia coli/genética , Mononucleotídeo de Flavina/metabolismo , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , NAD/metabolismo , Oxirredutases/metabolismo , Paracoccus denitrificans/enzimologia , Paracoccus denitrificans/genética , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Especificidade por Substrato , Termodinâmica , Thermus/enzimologia , Thermus/genética
9.
FEBS Lett ; 593(7): 697-702, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30883730

RESUMO

Ferric reductase B (FerB) is a flavin mononucleotide (FMN)-containing NAD(P)H:acceptor oxidoreductase structurally close to the Gluconacetobacter hansenii chromate reductase (ChrR). The crystal structure of ChrR was previously determined with a chloride bound proximal to FMN in the vicinity of Arg101, and the authors suggested that the anionic electron acceptors, chromate and uranyl tricarbonate, bind similarly. Here, we identify the corresponding arginine residue in FerB (Arg95) as being important for the reaction of FerB with superoxide. Four mutants at position 95 were prepared and found kinetically to have impaired capacity for superoxide binding. Stopped-flow data for the flavin cofactor showed that the oxidative step is rate limiting for catalytic turnover. The findings are consistent with a role for FerB as a superoxide scavenging contributor.


Assuntos
FMN Redutase/química , Flavinas/genética , Conformação Proteica , Superóxidos/metabolismo , Sequência de Aminoácidos/genética , Arginina/genética , Domínio Catalítico/genética , Cristalografia por Raios X , FMN Redutase/genética , Mononucleotídeo de Flavina/química , Mononucleotídeo de Flavina/genética , Flavinas/metabolismo , Cinética , Oxirredução , Oxirredutases/química , Oxirredutases/genética , Paracoccus denitrificans/química , Paracoccus denitrificans/enzimologia
10.
Mol Microbiol ; 111(6): 1592-1603, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30875449

RESUMO

Nitrate is available to microbes in many environments due to sustained use of inorganic fertilizers on agricultural soils and many bacterial and archaeal lineages have the capacity to express respiratory (Nar) and assimilatory (Nas) nitrate reductases to utilize this abundant respiratory substrate and nutrient for growth. Here, we show that in the denitrifying bacterium Paracoccus denitrificans, NarJ serves as a chaperone for both the anaerobic respiratory nitrate reductase (NarG) and the assimilatory nitrate reductase (NasC), the latter of which is active during both aerobic and anaerobic nitrate assimilation. Bioinformatic analysis suggests that the potential for this previously unrecognized role for NarJ in functional maturation of other cytoplasmic molybdenum-dependent nitrate reductases may be phylogenetically widespread as many bacteria contain both Nar and Nas systems.


Assuntos
Proteínas de Bactérias/metabolismo , Nitrato Redutase/metabolismo , Nitratos/metabolismo , Paracoccus denitrificans/enzimologia , Aerobiose , Anaerobiose , Proteínas de Bactérias/genética , Chaperonas Moleculares/metabolismo , Molibdênio/metabolismo , Nitrato Redutase/genética , Oxirredução , Paracoccus denitrificans/genética
11.
Biochim Biophys Acta Bioenerg ; 1859(9): 762-774, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29886048

RESUMO

The ATP synthase is a reversible nanomotor that gyrates its central rotor clockwise (CW) to synthesize ATP and in counter clockwise (CCW) direction to hydrolyse it. In bacteria and mitochondria, two natural inhibitor proteins, namely the ε and IF1 subunits, prevent the wasteful CCW F1FO-ATPase activity by blocking γ rotation at the αDP/ßDP/γ interface of the F1 portion. In Paracoccus denitrificans and related α-proteobacteria, we discovered a different natural F1-ATPase inhibitor named ζ. Here we revise the functional and structural data showing that this novel ζ subunit, although being different to ε and IF1, it also binds to the αDP/ßDP/γ interface of the F1 of P. denitrificans. ζ shifts its N-terminal inhibitory domain from an intrinsically disordered protein region (IDPr) to an α-helix when inserted in the αDP/ßDP/γ interface. We showed for the first time the key role of a natural ATP synthase inhibitor by the distinctive phenotype of a Δζ knockout mutant in P. denitrificans. ζ blocks exclusively the CCW F1FO-ATPase rotation without affecting the CW-F1FO-ATP synthase turnover, confirming that ζ is important for respiratory bacterial growth by working as a unidirectional pawl-ratchet PdF1FO-ATPase inhibitor, thus preventing the wasteful consumption of cellular ATP. In summary, ζ is a useful model that mimics mitochondrial IF1 but in α-proteobacteria. The structural, functional, and endosymbiotic evolutionary implications of this ζ inhibitor are discussed to shed light on the natural control mechanisms of the three natural inhibitor proteins (ε, ζ, and IF1) of this unique ATP synthase nanomotor, essential for life.


Assuntos
Trifosfato de Adenosina/metabolismo , Alphaproteobacteria/enzimologia , Inibidores Enzimáticos/administração & dosagem , Mitocôndrias/enzimologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Paracoccus denitrificans/enzimologia , Proteínas/administração & dosagem , Sequência de Aminoácidos , Mitocôndrias/efeitos dos fármacos , ATPases Mitocondriais Próton-Translocadoras/antagonistas & inibidores , Conformação Proteica , Subunidades Proteicas , Homologia de Sequência
12.
Open Biol ; 8(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29367351

RESUMO

In oxidative phosphorylation, ATP synthases interconvert two forms of free energy: they are driven by the proton-motive force across an energy-transducing membrane to synthesize ATP and displace the ADP/ATP ratio from equilibrium. For thermodynamically efficient energy conversion they must be reversible catalysts. However, in many species ATP synthases are unidirectional catalysts (their rates of ATP hydrolysis are negligible), and in others mechanisms have evolved to regulate or minimize hydrolysis. Unidirectional catalysis by Paracoccus denitrificans ATP synthase has been attributed to its unique ζ subunit, which is structurally analogous to the mammalian inhibitor protein IF1 Here, we used homologous recombination to delete the ζ subunit from the P. denitrificans genome, and compared ATP synthesis and hydrolysis by the wild-type and knockout enzymes in inverted membrane vesicles and the F1-ATPase subcomplex. ATP synthesis was not affected by loss of the ζ subunit, and the rate of ATP hydrolysis increased by less than twofold, remaining negligible in comparison with the rates of the Escherichia coli and mammalian enzymes. Therefore, deleting the P. denitrificans ζ subunit is not sufficient to activate ATP hydrolysis. We close by considering our conclusions in the light of reversible catalysis and regulation in ATP synthase enzymes.


Assuntos
Proteínas de Bactérias/metabolismo , Paracoccus denitrificans/enzimologia , ATPases Translocadoras de Prótons/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Deleção de Genes , Hidrólise , Paracoccus denitrificans/genética , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/genética
13.
J Biol Chem ; 293(5): 1702-1712, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29275330

RESUMO

(2S)-methylsuccinyl-CoA dehydrogenase (MCD) belongs to the family of FAD-dependent acyl-CoA dehydrogenase (ACD) and is a key enzyme of the ethylmalonyl-CoA pathway for acetate assimilation. It catalyzes the oxidation of (2S)-methylsuccinyl-CoA to α,ß-unsaturated mesaconyl-CoA and shows only about 0.5% activity with succinyl-CoA. Here we report the crystal structure of MCD at a resolution of 1.37 Å. The enzyme forms a homodimer of two 60-kDa subunits. Compared with other ACDs, MCD contains an ∼170-residue-long N-terminal extension that structurally mimics a dimer-dimer interface of these enzymes that are canonically organized as tetramers. MCD catalyzes the unprecedented oxidation of an α-methyl branched dicarboxylic acid CoA thioester. Substrate specificity is achieved by a cluster of three arginines that accommodates the terminal carboxyl group and a dedicated cavity that facilitates binding of the C2 methyl branch. MCD apparently evolved toward preventing the nonspecific oxidation of succinyl-CoA, which is a close structural homolog of (2S)-methylsuccinyl-CoA and an essential intermediate in central carbon metabolism. For different metabolic engineering and biotechnological applications, however, an enzyme that can oxidize succinyl-CoA to fumaryl-CoA is sought after. Based on the MCD structure, we were able to shift substrate specificity of MCD toward succinyl-CoA through active-site mutagenesis.


Assuntos
Proteínas de Bactérias/química , Oxirredutases/química , Paracoccus denitrificans/enzimologia , Oxirredução , Domínios Proteicos , Estrutura Quaternária de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato
14.
Biochim Biophys Acta Bioenerg ; 1858(11): 939-944, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28803911

RESUMO

Fo·F1H+-ATPase/synthase in coupled plasma membrane vesicles of Paracoccus denitrificans catalyzes ATP hydrolysis and/or ATP synthesis with comparable enzyme turnover. Significant difference in pH-profile of these alternative activities is seen: decreasing pH from 8.0 to 7.0 results in reversible inhibition of hydrolytic activity, whereas ATP synthesis activity is not changed. The inhibition of ATPase activity upon acidification results from neither change in ADP(Mg2+)-induced deactivation nor the energy-dependent enzyme activation. Vmax, not apparent KmATP is affected by lowering the pH. Venturicidin noncompetitively inhibits ATP synthesis and coupled ATP hydrolysis, showing significant difference in the affinity to its inhibitory site depending on the direction of the catalysis. This difference cannot be attributed to variations of the substrate-enzyme intermediates for steady-state forward and back reactions or to possible equilibrium between ATP hydrolase and ATP synthase Fo·F1 modes of the opposite directions of catalysis. The data are interpreted as to suggest that distinct non-equilibrated molecular isoforms of Fo·F1 ATP synthase and ATP hydrolase exist in coupled energy-transducing membranes.


Assuntos
Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Membrana Celular/química , Paracoccus denitrificans/enzimologia , Subunidades Proteicas/química , ATPases Translocadoras de Prótons/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Concentração de Íons de Hidrogênio , Transporte de Íons , Isoenzimas/química , Isoenzimas/metabolismo , Cinética , Paracoccus denitrificans/química , Subunidades Proteicas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Venturicidinas/química
15.
Biochim Biophys Acta Bioenerg ; 1858(11): 884-894, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28801051

RESUMO

Bacterial NO-reductases (NOR) belong to the heme-copper oxidase (HCuO) superfamily, in which most members are O2-reducing, proton-pumping enzymes. This study is one in a series aiming to elucidate the reaction mechanisms of the HCuOs, including the mechanisms for cellular energy conservation. One approach towards this goal is to compare the mechanisms for the different types of HCuOs, cytochrome c oxidase (CcO) and NOR, reducing the two substrates O2 and NO. Specifically in this study, we describe the mechanism for oxygen reduction in cytochrome c dependent NOR (cNOR). Hybrid density functional calculations were performed on large cluster models of the cNOR binuclear active site. Our results are used, together with published experimental information, to construct a free energy profile for the entire catalytic cycle. Although the overall reaction is quite exergonic, we show that during the reduction of molecular oxygen in cNOR, two of the reduction steps are endergonic with high barriers for proton uptake, which is in contrast to oxygen reduction in CcO, where all reduction steps are exergonic. This difference between the two enzymes is suggested to be important for their differing capabilities for energy conservation. An additional result from this study is that at least three of the four reduction steps are initiated by proton transfer to the active site, which is in contrast to CcO, where electrons always arrive before the protons to the active site. The roles of the non-heme metal ion and the redox-active tyrosine in the active site are also discussed.


Assuntos
Proteínas de Bactérias/química , Citocromos c/química , Complexo IV da Cadeia de Transporte de Elétrons/química , Oxirredutases/química , Oxigênio/química , Paracoccus denitrificans/química , Proteínas de Bactérias/metabolismo , Biocatálise , Domínio Catalítico , Citocromos c/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Heme/química , Heme/metabolismo , Cinética , Simulação de Dinâmica Molecular , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Oxirredução , Oxirredutases/metabolismo , Oxigênio/metabolismo , Paracoccus denitrificans/enzimologia , Conformação Proteica , Teoria Quântica , Termodinâmica
16.
Biochem J ; 474(15): 2563-2572, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28634178

RESUMO

Ascorbate protects MauG from self-inactivation that occurs during the autoreduction of the reactive bis-FeIV state of its diheme cofactor. The mechanism of protection does not involve direct reaction with reactive oxygen species in solution. Instead, it binds to MauG and mitigates oxidative damage that occurs via internal transfer of electrons from amino acid residues within the protein to the high-valent hemes. The presence of ascorbate does not inhibit the natural catalytic reaction of MauG, which catalyzes oxidative post-translational modifications of a substrate protein that binds to the surface of MauG and is oxidized by the high-valent hemes via long-range electron transfer. Ascorbate was also shown to prolong the activity of a P107V MauG variant that is more prone to inactivation. A previously unknown ascorbate peroxidase activity of MauG was characterized with a kcat of 0.24 s-1 and a Km of 2.2 µM for ascorbate. A putative binding site for ascorbate was inferred from inspection of the crystal structure of MauG and comparison with the structure of soybean ascorbate peroxidase with bound ascorbate. The ascorbate bound to MauG was shown to accelerate the rates of both electron transfers to the hemes and proton transfers to hemes which occur during the multistep autoreduction to the diferric state which is accompanied by oxidative damage. A structural basis for these effects is inferred from the putative ascorbate-binding site. This could be a previously unrecognized mechanism by which ascorbate mitigates oxidative damage to heme-dependent enzymes and redox proteins in nature.


Assuntos
Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Proteínas de Bactérias/metabolismo , Heme/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Paracoccus denitrificans/enzimologia , Ascorbato Peroxidases/química , Ascorbato Peroxidases/metabolismo , Proteínas de Bactérias/química , Cristalografia por Raios X , Peróxido de Hidrogênio/metabolismo , Hidroxiureia/farmacologia , Indolquinonas/química , Indolquinonas/metabolismo , Ferro/metabolismo , Cinética , Proteínas Mutantes/metabolismo , Oxirredução/efeitos dos fármacos , Análise Espectral , Fatores de Tempo , Triptofano/análogos & derivados , Triptofano/química , Triptofano/metabolismo
17.
J Colloid Interface Sci ; 500: 119-125, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28407595

RESUMO

Proteo-lipobeads (PLBs) are investigated as cell-free model systems to encapsulate membrane proteins such as ion channels and transporters. PLBs are based on nickel nitrile tri-acetic acid (Ni-NTA)-functionalized agarose beads, onto which membrane proteins (MP) are bound via histidine(his)-tag. Composite beads thus obtained (subsequently called proteobeads) are dialyzed in the presence of lipid micelles to form PLBs. As an example we employed cytochrome c oxidase from P. denitrificans with a his-tag fused to the C-terminus of subunitI. In this orientation the P side of CcO faces the outside of the PLB and hence protons are released to the outer aqueous phase, when electron transfer is initiated by light excitation of Ru complexes. Proton release kinetics was probed by fluorescence microscopy using the pH-sensitive sensor molecule fluorescein DHPE inserted into the lipid layer. In order to monitor the generation of membrane potentials we performed a FLIPR assay on the CcO embedded in PLBs using the FRET pair CC2-DMPE/DiSBAC2(3). The combined results show that PLBs can be used as a model system designed to quantify the kinetic parameters of membrane proteins. In addition, the FLIPR assay demonstrates the feasibility of PLBs for high throughput screening applications.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/química , Paracoccus denitrificans/enzimologia , Proteolipídeos/química , Sefarose/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Transporte de Elétrons , Corantes Fluorescentes/química , Ensaios de Triagem em Larga Escala/métodos , Cinética , Bicamadas Lipídicas/química , Potenciais da Membrana , Microesferas , Propriedades de Superfície
18.
Biochem J ; 474(11): 1769-1787, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28385879

RESUMO

Transcriptional adaptation to nitrate-dependent anabolism by Paracoccus denitrificans PD1222 was studied. A total of 74 genes were induced in cells grown with nitrate as N-source compared with ammonium, including nasTSABGHC and ntrBC genes. The nasT and nasS genes were cotranscribed, although nasT was more strongly induced by nitrate than nasS The nasABGHC genes constituted a transcriptional unit, which is preceded by a non-coding region containing hairpin structures involved in transcription termination. The nasTS and nasABGHC transcripts were detected at similar levels with nitrate or glutamate as N-source, but nasABGHC transcript was undetectable in ammonium-grown cells. The nitrite reductase NasG subunit was detected by two-dimensional polyacrylamide gel electrophoresis in cytoplasmic fractions from nitrate-grown cells, but it was not observed when either ammonium or glutamate was used as the N-source. The nasT mutant lacked both nasABGHC transcript and nicotinamide adenine dinucleotide (NADH)-dependent nitrate reductase activity. On the contrary, the nasS mutant showed similar levels of the nasABGHC transcript to the wild-type strain and displayed NasG protein and NADH-nitrate reductase activity with all N-sources tested, except with ammonium. Ammonium repression of nasABGHC was dependent on the Ntr system. The ntrBC and ntrYX genes were expressed at low levels regardless of the nitrogen source supporting growth. Mutational analysis of the ntrBCYX genes indicated that while ntrBC genes are required for nitrate assimilation, ntrYX genes can only partially restore growth on nitrate in the absence of ntrBC genes. The existence of a regulation mechanism for nitrate assimilation in P. denitrificans, by which nitrate induction operates at both transcriptional and translational levels, is proposed.


Assuntos
Adaptação Fisiológica , Regulação Bacteriana da Expressão Gênica , Modelos Biológicos , Nitratos/metabolismo , Ciclo do Nitrogênio , Paracoccus denitrificans/fisiologia , Compostos de Amônio/metabolismo , Proteínas de Bactérias/agonistas , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Metabolismo Energético , Perfilação da Expressão Gênica , Ácido Glutâmico/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Nitrato Redutase (NADH)/antagonistas & inibidores , Nitrato Redutase (NADH)/química , Nitrato Redutase (NADH)/genética , Nitrato Redutase (NADH)/metabolismo , Paracoccus denitrificans/enzimologia , Paracoccus denitrificans/crescimento & desenvolvimento , Proteômica/métodos , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Elementos Reguladores de Transcrição , Proteínas Repressoras/agonistas , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transativadores/agonistas , Transativadores/antagonistas & inibidores , Transativadores/genética , Transativadores/metabolismo
19.
Enzyme Microb Technol ; 99: 38-48, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28193330

RESUMO

3-Mercaptopyruvate (3MPy), a structural analog of 3-mercaptopropionic acid, is a precursor compound for biosynthesis of polythioesters in bacteria. The cost-effectiveness and sustainability of the whole process could be greatly improved by using the cysteine degradation pathway for an intracellular supply of 3MPy. Transamination of cysteine to its corresponding α-keto acid 3MPy is catalyzed by cysteine aminotransferases (CAT). However, CAT activity has so far not been described for bacterial aminotransferases (AT), and it was unknown whether they can be applied for the conversion of cysteine to 3MPy. In this study, we selected eight bacterial aminotransferases based on sequence homology to CAT of Rattus norvegicus (Got1). The aminotransferases included four aspartate aminotransferases (AATs) and four aromatic amino acid aminotransferases (ArATs) from Advenella mimigardefordensis DPN7, Escherichia coli MG1655, Shimwellia blattae ATCC 33430, Ralstonia eutropha H16 and Paracoccus denitrificans PD1222. For a more detailed characterization, all selected AAT or ArAT encoding genes were heterologously expressed in E. coli and purified. CAT activity was detected for all aminotransferases when a novel continuous coupled enzyme assay was applied. Kinetic studies revealed the highest catalytic efficiency of 5.1mM/s for AAT from A. mimigardefordensis. Formation of 3MPy from cysteine could additionally be verified by an optimized approach using derivatization of 3MPy with the Girard T reagent and liquid chromatography-mass spectrometry analyses.


Assuntos
Proteínas de Bactérias/metabolismo , Cisteína/análogos & derivados , Cisteína/metabolismo , Transaminases/metabolismo , Alcaligenaceae/enzimologia , Alcaligenaceae/genética , Sequência de Aminoácidos , Aspartato Aminotransferases/genética , Aspartato Aminotransferases/metabolismo , Proteínas de Bactérias/genética , Cupriavidus necator/enzimologia , Cupriavidus necator/genética , Cisteína/biossíntese , Enterobacteriaceae/enzimologia , Enterobacteriaceae/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Genes Bacterianos , Microbiologia Industrial , Cinética , Paracoccus denitrificans/enzimologia , Paracoccus denitrificans/genética , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Transaminases/genética
20.
J Biol Chem ; 292(12): 4987-4995, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28174301

RESUMO

Respiratory complex I couples electron transfer between NADH and ubiquinone to proton translocation across an energy-transducing membrane to support the proton-motive force that drives ATP synthesis. The proton-pumping stoichiometry of complex I (i.e. the number of protons pumped for each two electrons transferred) underpins all mechanistic proposals. However, it remains controversial and has not been determined for any of the bacterial enzymes that are exploited as model systems for the mammalian enzyme. Here, we describe a simple method for determining the proton-pumping stoichiometry of complex I in inverted membrane vesicles under steady-state ADP-phosphorylating conditions. Our method exploits the rate of ATP synthesis, driven by oxidation of NADH or succinate with different sections of the respiratory chain engaged in catalysis as a proxy for the rate of proton translocation and determines the stoichiometry of complex I by reference to the known stoichiometries of complexes III and IV. Using vesicles prepared from mammalian mitochondria (from Bos taurus) and from the bacterium Paracoccus denitrificans, we show that four protons are pumped for every two electrons transferred in both cases. By confirming the four-proton stoichiometry for mammalian complex I and, for the first time, demonstrating the same value for a bacterial complex, we establish the utility of P. denitrificans complex I as a model system for the mammalian enzyme. P. denitrificans is the first system described in which mutagenesis in any complex I core subunit may be combined with quantitative proton-pumping measurements for mechanistic studies.


Assuntos
Trifosfato de Adenosina/metabolismo , Bovinos/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Paracoccus denitrificans/enzimologia , Animais , Transporte de Elétrons , Mitocôndrias/metabolismo , NAD/metabolismo , Oxirredução , Fosforilação Oxidativa , Paracoccus denitrificans/metabolismo , Força Próton-Motriz , Prótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...